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Abstract

Attitude estimation is a significant challenge in space object tracking. Nevertheless, it also has important ap-
plications, including supporting operators facing communication issues and providing a better understanding of
object behaviour for trajectory prediction and Space Traffic Management. Traditional attitude estimation methods
frequently rely on expert-driven analysis and domain-specific models or require extensive observational data. This
work introduces a lightweight and interpretable machine learning approach for attitude determination, leveraging
domain-expert-driven feature engineering and decision tree-based models to achieve accurate classification with
minimal computational overhead. By designing features that mimic expert decision-making processes, our model
is a structured, data-driven alternative to manual analysis, ensuring consistent and reliable classifications — even
in scenarios where expert input is unavailable. Our method extracts motion, brightness, and periodicity features
from optical observations, effectively distinguishing between tumbling and stable objects. Unlike deep learning-
based techniques, which require extensive training and often lack transparency, our approach is interpretable by
design and further explainable through post hoc analysis methods, reinforcing its reliability for real-world appli-
cations. The combination of interpretability and computational efficiency enables rapid experimentation, real-time
adaptability, and safe deployment in operational environments. We demonstrate that our method achieves compet-
itive results through extensive validation and ablation studies while maintaining scalability, robustness, and opera-
tional feasibility. This work paves the way for efficient and operationally viable attitude estimation, particularly in
resource-constrained environments where real-time decision making is crucial.

Keywords: Attitude Characterisation, Optical Observations, Space Traffic Management, Explainable Machine

Learning

1. Introduction

Understanding and characterising the attitude behaviour
of resident space objects (RSOs) in low-Earth orbit
(LEO) has become an increasingly important chal-
lenge for the space surveillance and tracking commu-
nity [1]. In particular, distinguishing tumbling from
non-tumbling behaviour can offer valuable insights for
object classification, correlation and catalogue build-up
and maintenance [2, 3].

Recent work has explored machine learning ap-
proaches to address this problem, particularly within the
broader context of attitude estimation and characterisa-
tion. Two primary sensing modalities have been investi-
gated: radar, using radar cross-section (RCS) measure-
ments, and optical telescopes, using light curves derived
from photometric observations. The latter is the focus of
our work.

Within the optical passive domain, and especially
when applying machine learning, many studies rely on
deep architectures to model temporal dependencies in
light curves, such as convolutional neural networks [4],
or long short-term memory (LSTM) networks [5, 6, 7].
These approaches have shown strong performance but
often require dense, high-quality datasets that are not
always available in operational settings.

A related example from a different sensing modality
is the work of Paulete et al. [8], who proposed a frame-
work for classifying RSOs into various stability modes,
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such as Earth-pointing, inertial, or tumbling, based on
sequences of RCS observations.

In contrast, our objective is to investigate whether
tumbling behaviour can be detected using simpler, more
interpretable models trained on sparse data. Rather than
modelling fine-grained attitude states, we simplify the
problem into a binary classification task: tumbling ver-
sus non-tumbling. Inspired by Paulete et al. [8], we
derive labels based on object metadata, specifically, the
object type and operational status. Although this strat-
egy does not capture the full complexity of tumbling dy-
namics, it provides a useful proxy that aligns with phys-
ical intuition and offers a starting point for scalable atti-
tude characterisation.

To ensure transparency, adaptability, and computa-
tional efficiency, we adopt a classical supervised learn-
ing pipeline. This includes domain-informed feature
engineering [9, 10], and decision-tree-based classifiers,
with particular emphasis on model explainability.

Our experiments are based on observational data
acquired from Neuraspace’s ground-based telescopes,
NOWL and SOWL. At the time of the initial experi-
ments, both sensors had been operational for only a few
months, resulting in a limited but growing dataset. The
data consist primarily of apparent magnitude readings,
along with auxiliary pointing information such as az-
imuth, elevation, and sun phase angle.
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2. Methodology

2.1. Approach

This work frames the identification of tumbling objects
as a supervised classification problem. Given a set of
observational features such as apparent magnitude, sun
phase angle, and position of an object in a spherical co-
ordinate system (e.g., azimuth and elevation), the goal
is to predict whether an object exhibits tumbling be-
haviour.

Inspired by the labelling approach proposed
by Paulete et al. [8], we construct binary labels based on
publicly available metadata. Specifically, objects are la-
belled as rumbling if they are catalogued as debris (DEB)
or rocket bodies (R/B), or if they are non-operational
payloads (PAY) according to the SATCAT catalogue
provided by CelesTrak!. All remaining objects are
labelled as non-tumbling, which effectively includes
active payloads.

Although this dichotomy simplifies the true diversity
of attitude behaviours, it provides a practical and inter-
pretable approach. Non-operational objects and space
debris are more likely to exhibit uncontrolled rotational
motion due to the absence of active stabilisation mecha-
nisms. In contrast, operational payloads typically main-
tain some form of attitude control to ensure mission suc-
cess. While this binary classification label combination
can neither fully characterise tumbling dynamics (e.g.
tumbling rate or orientation) nor attitude regimes, it pro-
vides a meaningful division that serves as a useful proxy
for attitude characterisation.

Since the operational status required for this labelling
is not available for all objects in LEO, we restrict our
analysis to the subset of observations for which this in-
formation is known. This decision avoids introducing
label noise and ensures that the training data reflects
reasonably reliable ground truth. Nonetheless, we ac-
knowledge that the publicly reported operational status
may not always be fully up to date or completely ac-
curate, as some objects listed as “operational” may no
longer be active, and vice versa. Such discrepancies are
difficult to avoid in practice, but given the scope of this
initial study, we consider the available metadata a prac-
tical proxy for attitude characterisation, with the under-
standing that refining and validating labels remains an
important path for future work.

2.2. Model Choice
As noted, we tackle the challenge of classifying
tumbling objects in LEO within a very small data
regime. Given the restricted number of observations,
our approach emphasises feature engineering and inter-
pretability over entirely data-driven methods.
Beginning with the base features, i.e., right ascension,
declination, magnitude, and sun phase angle, we ob-
served that a rule-based approach corresponds closely
with expert intuition, as domain specialists frequently

Icelestrak.org/satcat/

TAC-25,A6,IP,110,x98573

depend on variations in magnitude, the behaviour of
phase angles, and the characteristics of motion to eval-
uate tumbling. This realisation prompted us to imple-
ment decision-tree-based models, which inherently cap-
ture rule-like patterns and facilitate efficient optimisa-
tion.

More concretely, we use XGBoost [11], a state-
of-the-art implementation of gradient-boosted decision
trees, particularly effective for tabular data. Besides, a
key advantage of this approach is its exceptionally quick
training time, which facilitates rapid prototyping and
experimentation. This flexibility supports ongoing fea-
ture refinement, exploration of various resampling tech-
niques for addressing class imbalance, and validation of
domain-inspired heuristics.

3. Feature Engineering
Feature engineering plays a crucial role in our study,
as we operate within a small data regime where it is
vital to maximise the information extracted from each
observation. Rather than relying solely on raw obser-
vational data (right ascension, declination, magnitude,
and sun phase angle), and to leverage the tabular-data
approach we have committed to, we have developed a
set of features that capture various aspects of brightness
variation, periodicity, motion dynamics, and phase an-
gle behaviour of objects in LEO. These features are in-
spired by physical models of tumbling motion and the
heuristic methods traditionally used by domain experts,
such as assessing magnitude fluctuations, phase-angle
magnitude relationships, and periodic motion patterns.
We categorise the features into five key groups: Mag-
nitude Features, Frequency and Periodicity Features,
Temporal Evolution Features, Motion-Based Features,
and Phase Angle and [llumination Features. Addition-
ally, we include Date and Seasonality Features to track
observational patterns over time.

3.1. Magnitude Features

The magnitude features aim to quantify the variability
and distribution of an object’s observed visual magni-
tude (brightness). Tumbling objects typically exhibit
stronger fluctuations in magnitude due to their irregular
surfaces and varying orientations relative to the observer
and the Sun.

Magnitude Variability Metrics. These features mea-
sure how much the object’s magnitude fluctuates over
time.

* mag _range: Difference between the maximum and
minimum observed magnitudes.

* mag_iqr: Interquartile range, representing the
spread of the middle 50% of the magnitude values.

Magnitude Distribution Shape Metrics. These fea-
tures analyse the statistical shape of the magnitude dis-
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tribution to detect asymmetries and extreme fluctua-
tions.

* mag_skewness: Measures asymmetry in the mag-
nitude distribution:

1 i (mag,—mag>3
AT - _ )
N= Omag
where mag, is the observed magnitude at time ¢,
N is the number of observations, mag is the mean

magnitude, and Oy, is the standard deviation of
the magnitude values.

* mag kurtosis: Measures how peaked or heavy-
tailed the magnitude distribution is:

N mag, —mag
NZ

Omag

Scale-Independent Magnitude Variability. These
features normalise magnitude fluctuations, making them
comparable across objects.

* mag_cv: Coefficient of variation, defined as the ra-
tio of the standard deviation to the absolute mean

magnitude:
Omag
|mag|
* mag_rms: Root mean square magnitude, which

gives greater weight to large fluctuations:

\/—t;magf

3.2. Frequency & Periodicity Features

Tumbling objects usually have periodic magnitude vari-
ations, which can be detected using time-frequency
analysis methods. These features help quantify domi-
nant periodicities and power spectral properties.

Lomb-Scargle Periodogram Features. These fea-
tures quantify periodic behaviour in the frequency do-
main.

* 1s_dominant_freq: Frequency corresponding to
the highest power peak in the Lomb-Scargle peri-
odogram.

e 1s_power_at_peak: The power at the dominant
frequency, indicating how strong the periodic sig-
nal is.

* 1s_power_ratio: The fraction of total power con-
tained in the dominant period.

¢ 1s num_peaks: The number of significant peaks,
indicating multiple periodic components.
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Wavelet Transform Features. Unlike Lomb-Scargle,
which assumes stationary periodicity, wavelets allow us
to analyse how periodicity evolves over time.

* wavelet_energy: Total energy in the wavelet
transform,  representing overall periodicity

strength:
Y W(a,b)P,

where W (a,b) are the wavelet coefficients at scale
a and time b.

* wavelet_entropy: Measures how disordered the
wavelet power distribution is. Higher values indi-
cate more irregular, chaotic tumbling:

-Y pilogpi,

where p; is the normalised wavelet power at fre-
quency i.

Autocorrelation Features. Autocorrelation measures
how similar magnitude values are over time, helping de-
tect repeating patterns.

* autocorr_lagl: Correlation between brightness
attimet and r + 1:

— mag)(mag;+1
Y.(mag; — mag)?

X (mag, — niag)

* autocorr_lag2: Correlation between brightness
at time ¢ and 7 4 2.

3.3. Temporal Evolution Features

Tumbling objects exhibit changes in magnitude over
time, not just in terms of magnitude range but also in
how fast and how smoothly magnitude transitions occur.
Non-tumbling objects tend to show gradual, predictable
changes in magnitude, while tumbling objects may have
rapid, erratic, or non-uniform variations. These features
capture the rate of change, smoothness, and curvature of
the brightness time series.

Magnitude Change Over Time

* mag_change max: Largest observed magnitude
change between consecutive observations.

* mag _change mean: Average absolute magnitude
change.

* mag_change_std:
change rates.

Variability of magnitude

Magnitude Trend Analysis

* mag_slope: The slope of a linear regression fitted
to the magnitude time series, indicating whether
the object is gradually brightening or dimming:

Y.(t —7)(mag, —mag)
Y(t—1)? '
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* mag_curvature: The second derivative of the
magnitude time series with respect to time, mea-
suring the rate at which the magnitude change is
itself changing (i.e., brightness acceleration):

d’mag
dr?

3.4. Motion-Based Features

Beyond magnitude variations, tumbling objects also ex-
hibit irregular motion patterns in their right ascension
and declination due to their changing orientation. By
analysing the angular velocity, acceleration, and disper-
sion of motion, we can quantify these variations and dis-
tinguish stable objects from tumbling ones.

Angular Speed Features. These features measure
how quickly an object’s apparent position changes in the
sky:

AO = \/(AOC Cos 5mean)2 + (A5)27

6 +9 A6
(smean:%a w:Ea

where Aa and AS are the changes in right ascension
and declination between two observations, Spyean is their
average declination, A is the angular displacement, and
o is the angular speed.

¢ angular_speed_max: Maximum recorded angular
speed, representing the fastest motion observed.

* angular_speed_mean: Average angular speed
over the observation period.

* angular_speed_std: Standard deviation of angu-
lar speed, capturing motion variability (e.g., higher
values suggest erratic movement).

Higher-Order Motion Features. These features de-
scribe how quickly an object’s motion changes, captur-
ing more abrupt shifts in direction or speed.

e jerkmax: The maximum rate of change of an-
gular acceleration (i.e., jerk), which reflects how
abruptly the motion varies:

A®
At

* motion_dispersion: The variance of angular
speed over time:

1

5 Lo -ap,

M=

t=1

where @ is the mean angular speed and N is the
number of time steps.
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Azimuthal Motion Features. These features quantify
motion along the azimuth angle, which corresponds to
the horizontal direction of the object:

d azimuth
dr

* azimuth_speed_max:
imuthal direction.

Maximum speed in az-

* azimuth_speed_mean: Mean azimuthal speed.

* azimuth_speed_std: Standard deviation of az-
imuthal speed.

Elevation Motion Features. These features describe
motion along the elevation angle, which corresponds to
the vertical position of the object in the sky:

delevation
dt ’

e elevation speed max: Maximum elevation

speed.
* elevation_speed mean: Mean elevation speed.

e elevation_speed_std: Standard deviation of el-
evation speed.

3.5. Phase Angle & Illumination Features

These features analyse how an object’s brightness varies
with respect to its sun phase angle, which influences
how sunlight reflects off its surface and is observed from
Earth.

Phase-Magnitude Correlation. Quantifies the linear
correlation between observed magnitude and phase an-
gle: )
L(6, — 6)(mag, —mag)
VX(6 — )2 L(mag, — mag)?

where 6, is the phase angle at time 7, mag; is the ob-
served magnitude, 0 is the mean phase angle, and mag
is the mean magnitude.

Phase Curve Fit Analysis. These features evaluate
how well a simple polynomial model fits the phase-
magnitude relationship, helping detect deviations from
expected reflective behaviour.

* phase_curve_rmse: The root mean squared error
of the fitted curve:

1 N
N Z(magt —mug,)?,
i=1

where mag; is the observed magnitude, mag; is the
predicted magnitude from the model, and N is the
number of observations.
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deviation.
Features F1-Score Precision Recall
All 0.641+£0.033 0.643+0.025 0.64240.052
w/o Magnitude Features 0.612+£0.025 0.603+0.026 0.6224+0.038
w/o Frequency & Periodicity Features 0.6174+0.040 0.569+£0.043 0.676 +-0.046
w/o Temporal Evolution 0.618+0.038 0.613£0.050 0.628+0.061
w/o Motion-Based Features 0.5524+0.024 0.5624+0.032 0.54540.031
w/o Phase Angle & Illumination 0.613£0.030 0.606+0.039 0.6244+0.049
w/o Date and Seasonality 0.5754+0.045 0.543+£0.033 0.6134+0.071

* phase_curve_variance: The variance of residu-
als from the fitted phase-magnitude curve:

1Y .
N Z(mag, — mag,)?.
i=1

3.6. Date & Seasonality Features

Finally, we include temporal features. Unlike the other
feature groups, this set of features does not directly mea-
sure tumbling behaviour but can still provide valuable
contextual information about the observational condi-
tions. These features can help account for seasonal vari-
ations, observation biases, or long-term trends in the
data.

¢ obs_month: Month of observation (1-12).
* obs_year: Year of observation.
* day_of _year: Day of the year (1-365).

* time_since_first_obs: Days since the first
recorded observation in the dataset.

4. Model Training and Validation

As outlined in Section 2.2, the classification of tum-
bling versus non-tumbling objects is performed using
XGBoost, a widely used gradient boosting framework
known for its performance on structured data. Due to
the relatively small dataset and the significant class im-
balance, a number of strategies were adopted to enhance
the model’s robustness and generalisation.

Handling Class Imbalance with SMOTE. The
dataset exhibits a strong class imbalance, with sig-
nificantly fewer tumbling objects compared to non-
tumbling ones. To mitigate this, we apply the Synthetic
Minority Over-sampling Technique (SMOTE) [12],
which generates new samples for the minority class by
interpolating between existing instances. This helps the
classifier better learn the decision boundary for the un-
derrepresented class and reduces bias toward the major-
ity class.
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Bayesian Optimisation for Hyperparameter Tuning.
XGBoost’s performance is heavily influenced by hyper-
parameters. To optimise model performance, we em-
ploy Bayesian Optimisation [13] to tune key hyperpa-
rameters, including maximum tree depth, learning rate,
subsample ratio, column sampling ratio, and number
of estimators. Unlike grid search, Bayesian Optimisa-
tion explores the hyperparameter space more efficiently
by using a probabilistic surrogate model to guide the
search. Each optimisation run uses 20% of the training
set as a validation subset. The F1-score is used as the
objective function, as it balances precision and recall
(crucial in imbalanced classification tasks). The best
combination of hyperparameters is then retained for fi-
nal model evaluation.

Training and Evaluation. The final model is trained
using the full training set with the optimised hyperpa-
rameters and the engineered features (see Section 3).
Performance is evaluated on a held-out test set using the
F1-score, precision, and recall. To ensure robustness,
the entire pipeline is executed across multiple random
seeds for train/test splits and hyperparameter tuning.

5. Results

For robustness and a fair assessment of the performance,
the results were obtained from 10 different trials. Ta-
ble 1 shows the mean and standard deviation of the F1-
score, precision, and recall across all trials when consid-
ering different groups of features.

With all the features, the model achieved an average
F1-score of 0.641 4-0.033, with precision and recall of
0.643 £0.025 and 0.642 £ 0.052, respectively. These
values indicate a balanced trade-off between false posi-
tives and false negatives, with no significant bias toward
one class (as can be noted by the close agreement be-
tween precision and recall). The relatively small stan-
dard deviations suggest that the model’s performance
is consistent across different random initialisations, de-
spite the small dataset size and inherent class imbal-
ance. It is worth noting, however, that a portion of
the misclassifications may arise from limitations in the
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labelling itself: for example, operational payloads oc-
casionally exhibit tumbling-like behaviour, while cer-
tain debris objects may instead be in steady rotation
rather than true tumble. Such ambiguities imply that
a more carefully curated dataset could lead to improved
results, while also highlighting that there may be an up-
per bound on achievable performance given the current
labelling scheme.

The ablation study revealed that removing any fea-
ture group leads to a drop in Fl-score, confirming that
all categories contribute to classification. Motion-based
features were the most critical, with their removal caus-
ing the largest degradation across all metrics. Interest-
ingly, the highest recall (0.676 & 0.046) was achieved
when frequency- and periodicity-related features were
excluded, suggesting that while these features improve
precision by filtering false positives, they may also sup-
press the detection of true tumbling cases. The full set
of features, however, achieves the best overall balance
between precision and recall.

Although a direct comparison with other works is not
possible due to differences in data sources, observation
modalities, and labelling schemes, the achieved perfor-
mance is in line with the range of results reported in re-
lated studies such as Paulete et al. [8]. In their work, se-
quences of RCS measurements processed through deep
learning models achieved higher scores when multiple
observations per object were available. However, our
approach operates in a more challenging setting with
sparse optical data and an emphasis on interpretabil-
ity, factors that make these results a promising first step
toward operational attitude characterisation using light
curves.

The SHAP [14] summary plot in Figure 1 highlights
the most important features driving the classification be-
tween tumbling and non-tumbling objects. Each point in
the plot corresponds to a SHAP value of an instance and
a feature. The features are ordered according to their
importance, i.e., the most important one at the top. The
importance is defined as the mean absolute value of the
SHAP values for each feature. The colourmap repre-
sents the feature value in a scale from low to high, i.e.,
from the minimum feature value to its maximum. For
each feature, the jittered points along the y-axis repre-
sent the overlapping points to provide a better under-
standing of the distribution of the values.

Indeed, when analysing Figure 1, extracted when
considering all the features, it can be seen that the most
important feature is the time_since_first_obs, con-
firming that the temporal context of the observation,
specifically, how recently it was acquired, has a strong
impact on classification performance. This suggests that
the ordering of the samples is not merely incidental but
carries meaningful information, with more recent ob-
servations potentially reflecting changes in operational
status, improved visibility windows or sensor schedul-
ing preferences. Additional temporal metadata, such
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Fig. 1. SHAP summary plot of the best performing trial.
The importance is defined as the mean absolute value
of the SHAP values for each feature. The colourmap
represents the feature value in a scale from low to high,
i.e., from the minimum feature value to its maximum.

as obs_month and obs_year, also rank highly, which
may capture seasonal visibility patterns, sensor schedul-
ing preferences, or other systematic biases in the dataset
rather than intrinsic physical properties of the objects.

The second most important feature,
phase_curve_variance, quantifies the variance
of residuals from a fitted phase—magnitude curve, ef-
fectively measuring how much the observed brightness
deviates from what would be expected under a simple
reflective geometry. High variance indicates that the
relationship between brightness and phase angle is
poorly explained by a smooth model, suggesting irregu-
lar reflective behaviour. Such deviations are physically
consistent with tumbling objects, whose changing
orientations cause unpredictable changes in observed
brightness. Following this, other photometric features
such as mag change std and mag rms also rank
prominently, reinforcing the expectation that tumbling
behaviour is linked to greater fluctuations in brightness.
These features likely capture the compounded effects of
rotation, surface heterogeneity, and specular reflections,
all of which contribute to more erratic light curves.

Frequency-domain information from
ls_dominant_freq and wavelet_energy con-
tribute further, as expected given that periodic or
quasi-periodic signatures in brightness variation are
typically associated with tumbling states.
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Kinematic features, including angular_speed_std,
angular_speed_mean, and elevation_speed_std,
also play a relevant role. While their effect on the clas-
sification is indirect, they capture physical relationships
between observation geometry and apparent magnitude
variations, which in turn help distinguish tumbling from
stable configurations.

6. Conclusion

We presented a lightweight and interpretable frame-
work for classifying RSOs in LEO as tumbling or non-
tumbling from sparse optical observations. By combin-
ing domain-expert-driven feature engineering with a de-
cision tree-based model, the method captures physically
meaningful motion, brightness, and periodicity features,
offering transparency and explainability through SHAP
analysis.

Across 10 independent trials, the model achieved an
average Fl-score of 0.641 £ 0.033, with precision and
recall of 0.643 £ 0.025 and 0.642 £ 0.052, respectively,
indicating balanced and consistent performance despite
limited data and class imbalance. While direct com-
parison with prior studies is not straightforward, the
results are competitive with deep learning approaches
such as Paulete et al. [8], achieved here under more re-
strictive data and operational conditions.

This work serves as a starting point, showing that in-
terpretable, feature-based models can achieve promising
performance even under sparse observational regimes.
The results highlight that such approaches hold potential
alongside more complex deep learning solutions, par-
ticularly when transparency, explainability, and opera-
tional feasibility are priorities.
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